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Census of Agriculture

Every five years, USDA’s National Agricultural Statistics
Service (NASS) conducts the U.S. Census of Agriculture

* The Census provides a detailed picture of U.S. farms,
ranches and the people who operate them

* |tis the only source of uniform, comprehensive agricultural
data for every state and county in the United States

* NASS makes Census data publicly available only as
summary statistics

* Record-level information should be provided and
disclosure of the confidential information should be
averted
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Goal of the research

* Problem: To provide detailed information based on the
Census data

e Constraint: To avoid the disclosure of the confidential
information

* Solution: A modified or synthetic dataset that preserves the
internal relationship of the original dataset

* Previous approaches (Rubin, 1993; Reiter, 2005a,b,c; Paiva
et al., 2014; Drechsler and Reiter, 2009):

— Synthetic data distributions generated from models
— Pooled or near-neighbors, used as exchangeable observations
— Inter-changes of data elements among units

* The trade-off for synthetic data is disclosure protection vs
preservation of data complexity
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Motivation of Generative
Adversarial Network (GAN)

ldea:

* To preserve finer internal structures

* To duplicate statistical properties with the original dataset
Approach:

* To use deep learning networks to synthesize

* To revise until synthetic data cannot be distinguished from
the original data

Solution: Pair of networks

* Generative network (G-network) creates record-level
synthetic data

e Discriminative network (D-network) distinguishes real data
from the synthetic
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Generative Adversarial Network (GAN)

GAN (Goodfellow et al., 2014) consists of two neural networks that
train simultaneously and “compete” with each other

 G-network takes in random numbers and returns record-level
synthetic data

* The generated synthetic data concatenated with the real data
are fed into the D-network

* A D-network learns to distinguish real data from synthetic data
* Parameters of G-network are updated to “fool” the
discriminator
Iterate

* Process stops when the G-network’s output (synthetic data)
can’t be distinguished by D-network from the real population
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Two utility measures

Two utility measures are used adapted from Woo et al. (2009)

Propensity score
* Assume: Original population and synthetic population have the same
size
e Original records labeled 0, synthetic records labeled 1

* Propensity score for each record is generated by a model with

response either O or 1
N

1 ~ 2
Uy =15 ) Bi=0)
i=1
U,: Propensity utility score
N: Total number of records
p;: Estimated propensity score for unit i

c: 0.5
* Completely indistinguishable when U, — 1, otherwise — 0.75

USDA
e




Two utility measures - continued

Clustering Score Measure
* Assume: Original population and synthetic population have the same size
e All the clusters are equally important

n
U, = 1——ZWL(£—C

U.: Clustering utility score

G: Total number of clusters

n;:Number of observations in the j-th cluster

n;,: Number of original observations in the i-th cluster

Wi 1

c: 0.5

e Completely indistinguishable when U, — 1, otherwise = 0.75
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Evaluation of identification
disclosure risk

Disclosure risk measure using neighborhood-based
approach adapted from Hu and Savitsky (2019)

N
1
ST — Nz Ii
i=1
S,: Risk score

N: Total number of records

I;: 1if the i-th synthetic record lies in the 10-neighbors of
the i-th original record, otherwise 0

* Completely distinguishable when S,. — 0, otherwise —
1
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Pilot experiment

* A subset of 2012 Census of Agriculture dataset

— One million records
— No missing values
— A subset of items selected

o Total Land in Farms

o Total Value Production
o State (State id)

o County (County id)

e Rescaleto-1and1
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Pilot experiment - continued

e A GAN is trained on the subset of one million records
dataset considering the loss function

— In G-network
* The cross entropy to penalize the output from G-network classified as
synthetic by D-network
* First, and second moments of the original distribution added to the
loss function

— In D-network

* The cross entropy to penalize wrongly assigning the output from G-
network to real, and real to synthetic

e Utility measures are calculated to evaluate the synthetic
population

e Evaluation of identification disclosure risk measure is
calculated
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Result
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Result - continued

Propensity Score Measure: U, =0.97 - 1

Clustering Score Measure:
« G=200, U,=0.92 > 1
Risk Score Measure: 5, =0.02 - 0
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Conclusion

* GAN worked well for generating synthetic
population for two continuous Census of
Agriculture variables in terms of

— Propensity score measure

— Clustering score measure
* GAN failed to capture extreme values

 |dentification disclosure risk of synthetic
population is low
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Future work

 Comprehensive experimentation

— Multiple variables
— Different numbers of clusters
— Categorical, count, and skewed variables

* Further tuning of GAN’s hyper-parameters

* Other measures of utility and of identification
disclosure risks

* Adaptation to better fit distribution extremes
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Questions?

ywei@niss.org
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